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1 Département de Physique, Faculté des Sciences, Université de Dschang, BP 067 Dschang,
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Abstract
The free-energy of discrete nonlinear Klein–Gordon (NKG) systems with
anharmonic interparticle interactions is derived by means of the transfer integral
operator method, with the first lattice corrections and kink–kink interactions
taken into account. Two particular substrate potentials are considered: the
φ − f our and the sine-Gordon (sG). We show that, in the general case where
the system exhibits the kink soliton like excitations, the correction factors, due to
the lattice discreteness, appearing in the free-energy and in the lattice corrected
static kink soliton energy, depend on the temperature through a coupling of the
interparticle anharmonicity strength to the temperature. Similarly, in the purely
anharmonic NKG systems, characterized by the absence of the linear dispersion,
where thermodynamic properties are sensitive to kink compactons, we find
also that the correction factors are temperature dependent. In both cases, they
decrease with increasing temperatures, although the correction factors verify
different temperature laws.

1. Introduction

The properties of a wide variety of systems of condensed matter physics can be understood in
terms of nonlinear excitations (kinks) which arise as a solution of equations of the nonlinear
Klein–Gordon (NKG) type [1]. These systems are divided into two main parts. In one part,
continuous systems are treated as fluids and plasmas, and kinks arise as solution of partial
differential equations. In the other part, intrinsically discrete systems are considered such as
anharmonic atomic lattices, chains of magnetic ions and hydrogen-bonded chains. Here, the
dynamics of the system can be modelled by the differential-difference equations or discrete
NKG equation which cannot be solved exactly. Except in some particular cases, for example the
Toda lattice [2], which is known to be completely integrable, the models proposed are usually
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treated in the displacive limit where the continuum approximation is valid, assuming a slow
variation of the scalar field with space. However, this is not always the case and solitons with a
width of a few lattice spacings have been observed [3]. This continuum approximation obtained
by ignoring the discrete structure with the lattice soliton yields results that are quantitatively
and/or qualitatively inaccurate according to whether the soliton width is of the order of the
lattice constant or large compared to the lattice spacing. In the first case, the system is weakly
discrete, while in the second case the system is highly discrete.

The influence of lattice discreteness on the properties of nonlinear systems that are
governed by these equations of the NKG type has been investigated by several authors [4–
12]. These studies have pointed out a large variety of effects ranging from correction of the
continuum solutions (weakly discrete system) to completely different phenomena which do not
appear in the continuum limit (highly discrete case), namely, the modification of kink velocity
and shape, and the pinning of kinks on the lattice.

Similarly, the statistical mechanics of the discrete NKG systems, which is a particularly
important problem in condensed matter physics, has also been investigated. In fact, Currie
et al [13] have developed an ideal-gas phenomenology for continuum NKG systems based on
the particle like behaviour of dilute kinks. They found agreement between thermodynamic
quantities obtained phenomenologically and calculated by the exact transfer integral operator
(TIO) method. Both ideal-gas phenomenology and the TIO method [14, 15] have been extended
to include kink–kink interactions [16, 17] and lattice effects [18–21] to the thermodynamic
properties of the system.

However, special attention has been paid only to the basic NKG systems, i.e., for models
which are equivalent to a linear chain of particles harmonically coupled with the nearest
neighbours and subjected to an on-site potential which possesses several degenerate minima.
This spatial degeneracy associated with the linear coupling between lattice sites is then at
the origin of a kink structure with infinite wings, which causes mutual interactions between
adjacent kinks. This is the merit of Rosenau and Hyman [22], who investigated a special type
of Korteweg–de Vries equation to discover that solitary waves may become compact in the
presence of a nonlinear dispersion. Such solitary waves, which are characterized by a compact
support, i.e., the absence of infinite tail, have been called compactons. Since this pioneering
work, the existence and the dynamics of compactons in the nonlinear systems have become the
subjects of many works [23–31]. For example, Kivshar [23] reported that intrinsic localized
modes in purely anharmonic lattices may exhibit compacton like properties. Similarly, Dusuel
et al [25] demonstrated that the same phenomenology can also appear in NKG systems with
anharmonic coupling, and then obtained the experimental evidence of the existence of static
kink compactons in a real system made up by identical pendulums connected by anharmonic
springs. The study of lattice effects on the motion of this kink compacton [28] has revealed that
the effects of lattice discreteness and the presence of a linear coupling between lattices sites
are detrimental to a stable ballistic propagation of the compacton because of the particular
structure of the small oscillation frequency spectrum of the compacton in which the lower
frequency internal modes enter in direct resonance with phonons modes. Recently [32], by
means of the TIO method we have derived the thermodynamic properties of this system. We
have shown that the presence of kink compactons in the thermodynamic properties of the
system is signalled by a term proportional to exp[−χ(β E (0)

kc )3/4], where E (0)

kc is the energy of
the static kink compacton and χ , a temperature-independent coefficient, instead of the well-
known relation exp(−β E (0)

s ), where E (0)
s is the energy of the static kink valid for the kink

solitons of the basic NKG systems.
Our purpose in this paper is to extend the investigation of [32] on the calculation of the

thermodynamic properties of NKG systems supporting kink compactons in order to include
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the lattice effects. Our results are valid for weakly discrete system, i.e., for the case where the
kink width is large compared to the lattice spacing and where the effect of pinning of kinks is
so small that the trapping of the kink in the pinning potential well plays a minor role.

The paper is organized as follows. Section 2 deals with the model description. The 1D
Hamiltonian of the NKG model with anharmonic coupling is presented and the characteristic
parameters, of the kink compacton like excitation solution of the resulting generalized NKG
equation, are derived for two particular on-site potentials: the φ − f our and the sine-Gordon
(sG) potentials. In addition, the energy of a kink soliton in the limit of weak nonlinear coupling
is also calculated. In section 3, we use the TIO method to derive the different contributions of
low-lying excitations (phonons, kink and kink–kink) in the expression of the free-energy which
takes into account the lattice corrections and from which other thermodynamic quantities can
be explicitly derived. We find that the lattice corrections are a function of the temperature. Two
distinct cases are considered: at first, the case where the systems exhibit static kink soliton like
excitation and next, the case where they rather exhibit static kink compacton, i.e., the case of
purely anharmonic systems. Finally, section 4 provides a summary and concluding remarks.

2. Model and kink excitations

We consider a one-dimensional (1D) chain of N particles with mass m, anharmonically
coupled to their nearest neighbours, and subjected to a nonlinear on-site potential Vs(φ).
The Hamiltonian of this discrete chain may be written as

H =
∑

i

Aa

{
1

2

(
dφi

dt

)2

+
C2

0

2a2
(φi+1 − φi)

2 +
Cnl

4a4
(φi+1 − φi )

4 + ω2
0Vs(φi )

}
, (1)

where φi denotes the dimensionless displacement of the i th particle measured from the i th
lattice site. The constants C0 and ω0 are the characteristic velocity and frequency, respectively,
and the factor A ≈ ma sets the energy scale of the system. The positive parameter Cnl

controls the strength of the nonlinear interparticle coupling. The last term of equation (1) is
the substrate potential which has at least two degenerate minima. In this paper, we consider
two particular cases: the φ − f our potential Vs(φ) = (1/8)(1 − φ2)2, and the sine-Gordon
(sG) potential Vs(φ) = 1 − cos(φ). When Cnl = 0, the Hamiltonian (1) reduces to the
well-known NKG system Hamiltonian previously used by Currie, Krumhansl, Bishop, and
Trullinger (CKBT) [13].

The characteristic length of this generalized NKG system (1) is given by d0 = C0/ω0.
However, in the purely anharmonic case characterized by the absence of the harmonic term
(C0 = 0) in equation (1), the new characteristic length of the system becomes

dkc = π(6Cnl/ηω2
0)

1/4, (2)

where η = 1 for the φ − f our potential and η = 8 for the sG one. Thus, as we shall see
below, d0 characterizes the kink soliton systems while dkc stands for the characteristic length
for the kink compacton systems. In both cases, two different regimes can occur according to
whether the characteristic length of the system is of the order of the lattice constant a or large
compared to a. The first situation results when the interaction energy between neighbours is
small compared to the on-site potential. In this case we are faced with the discrete system. The
opposite situation (d0 � a or dkc � a) occurs when the linear coupling and nonlinear coupling
between sites are strong enough to ensure that the variation of φi from site to site is quite small
and one can use the standard continuum approximation φi (t) → φ(x, t) and expand φi±1
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around φi , with x = ia. Under these conditions, the Hamiltonian (1) is transformed to

H = A
∫

dx

{
1

2

(
∂φ

∂ t

)2

+
C2

0

2

(
∂φ

∂x

)2

+
Cnl

4

(
∂φ

∂x

)4

+ ω2
0Vs(φ)

}
. (3)

We shall have the occasion to use both forms, (1) and (3), of the Hamiltonian of the system. The
discrete form (1) is used in obtaining exact statistical mechanical results via the TIO formalism,
whereupon the explicit process of taking the continuum limit follows. The continuum form (3)
is used to study the nature of excitations of the system; these excitations arise as solutions to
the Euler–Lagrange equation of motion of particles of the system following from equation (3):

∂2φ

∂ t2
− C2

0
∂2φ

∂x2
− 3Cnl

(
∂φ

∂x

)2
∂2φ

∂x2
+ ω2

0
dVs(φ)

dφ
= 0. (4)

In order to find, as usual, travelling waves at velocity v, we use the independent variable
s = x − vt . Thus, equation (4) is transformed to

(
v2 − C2

0

)d2φ

ds2
− 3Cnl

(
dφ

ds

)2 d2φ

ds2
+ ω2

0
dVs(φ)

dφ
= 0. (5)

This equation admits different kinds of excitations [25, 29, 32] among which are the kink
excitations. These kinks are the localized structure of permanent profile and verify the boundary
conditions limx→±∞ φ = ±1 and limx→±∞ dφ/dx = 0 for the φ − f our potential, and
limx→±∞ φ = 0(2π) and limx→±∞ dφ/dx = 0 for the sG potential. Within these conditions,
the first integral resulting from equation (5) is given by(

dφ

ds

)4

+
2

3

C2
0

Cnlγ
2
L

(
dφ

ds

)2

− 4

3

C2
0

Cnld2
0

Vs(φ) = 0, (6)

where γL = (1 − v2/C2
0)

−1/2 is the Lorentz factor. Thus, by solving equation (6), it is easy to
show that the shape of the kink soliton structure is described by the following implicit integral
equation:

∫ φ(s)

φ(s0)

dφ

2
√

Vs(φ)

(
1 +

√
1 + 12

Cnlγ
4
L

C2
0 d2

0

Vs(φ)

)1/2

= ±γL

d0
(s − s0), (7)

while its energy is given by

Eks = 2AC0ω0γL

∫ φ02

φ01

dφ
√

Vs(φ)

1 + 4 Cnl γ
2
L

C2
0 d2

0
Vs(φ) +

√
1 + 12 Cnl γ

4
L

C2
0 d2

0
Vs(φ)(

1 +

√
1 + 12 Cnl γ

4
L

C2
0 d2

0
Vs(φ)

)3/2 , (8)

where φ01 and φ02 are the positions of two adjacent degenerate minima of the substrate potential:
φ01 = −1 and φ02 = 1 for the φ − f our potential, and φ01 = 0 and φ02 = 2π for the sG
potential. φ(s0) is the value of the displacement field φ at the centre of mass of kink soliton.
From symmetry considerations, φ(s0) is taken as the position of the potential barrier separating
the two adjacent minima: φ(s0) = 0 for the φ − f our potential and φ(s0) = π for the sG
potential. Figures 1 and 2 show the influence of the anharmonic interparticle term on the
kink soliton profile. These shapes have being obtained from the numerical integration of
equation (7). It follows that the shape of kink solitons is weakly modified by the presence of
the anharmonic interparticle term. When the interparticle anharmonicity strength Cnl is weak,
the expression of the energy (8) can be easily integrated. To first order in Cnl , one obtains:
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Figure 2. Kink soliton profile, for
the sG potential, for a few values
of the dimensionless interparticle
anharmonicity strength ξ = Cnl/C2

0 .

• for the φ − f our potential,

Eks = E (0)
s γL

[
1 +

3

70

Cnlγ
2
L

C2
0 d2

0

(
4 − 3γ 2

L

)]
, with E (0)

s = 2
3 AC0ω0, (9)

• for the sG potential,

Eks = E (0)
s γL

[
1 +

2

3

Cnlγ
2
L

C2
0 d2

0

(
4 − 3γ 2

L

)]
, with E (0)

s = 8AC0ω0, (10)

where E (0)
s is the well-known rest energy of the kink soliton in the basic NKG system. It appears

from equations (9) and (10) that, in the non-relativistic regime (γL = 1), the correction term
induced by the presence of the anharmonic interparticle term increases with the increasing
values of Cnl and remains very small for weak values of Cnl .

As previously mentioned [25], these kink solitons may become compact if, in equation (5),
the nonlinear coupling term, which corresponds to the nonlinear dispersion, is preponderant:
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the linear coupling term can be zero. In this limit, v = C0 = 0, the kink compacton structure
has the following explicit expression [25, 32]:

• for the φ − f our potential,

φ(s) = sin [(s − s0)π/dkc] , for |(s − s0)| < dkc/2, (11)

with φ(s) = −1 for (s − s0) < −dkc/2 and φ(s) = +1 for (s − s0) > dkc/2,
• for the sG potential,

φ(s) =
{

2 arccos
{
cn2 [(s − s0)π/dkc, 1/2]

}
, for (s > s0),

−2 arccos
{
cn2 [(s − s0)π/dkc, 1/2]

}
, for (s < s0).

(12)

The static energy of this compacton, following from equation (8) with v = C0 = 0, is given
by:

• for the φ − f our potential,

E (0)

kc = Aω2
0dkc/16. (13)

• for the sG potential,

E (0)

kc = 215/4

9π1/2


(1/4)


(3/4)
Aω2

0dkc, (14)

where dkc may be viewed as the pseudo-kink compacton width, and cn(x, y) and 
(x) are the
Jacobi elliptic and the gamma functions, respectively. So the continuum approximation used
here is valid only if dkc/a � 1. Note that, contrary to the kink soliton which has exponentially
decreasing wings extending to infinity, the compacton solutions are strictly localized: they
have no wings, i.e., they have a compact shape. In the next section, the above expressions
will be of particular importance for the determination of different contributions of low-lying
excitations including kink solitons and kink compactons on the thermodynamic quantities of
the NKG systems.

3. Low-temperature classical statistical mechanics

3.1. Kink soliton systems

The classical partition function for systems governed by the Hamiltonian (1) for the density
of states in the phase space is given in the factored form

Z = Z φ̇ Zφ, (15)

where Z φ̇ is the kinetic contribution and Zφ the configurational part. The kinetic contribution
can be easily evaluated while the configurational part can be evaluated after lengthy algebra
by making use of the TIO technique [13], as in the case of the basic NKG models. It yields:

Z φ̇ = (
2π Aa/βh2

)N/2
, Zφ =

∞∑
n=0

exp
(−β ALω2

0εn
)
, (16)

where β = 1/kBT , h is Planck’s constant and L = Na is the total length of the system of
N particles with assumed periodic boundary condition φN+1 = φ1. The quantities εn are the
eigenvalues of the TIO defined by∫ +∞

−∞
dφi exp

[−β Aaω2
0 f (φi+1, φi )

]
�n(φi ) = exp(−β Aaω2

0εn)�n(φi+1), (17)
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where

f (φi+1, φi ) = C2
0

2a2ω2
0

(φi+1 − φi )
2 +

Cnl

4a4ω2
0

(φi+1 − φi )
4 +

1

2
[Vs (φi+1) + Vs(φi)] . (18)

As pointed out by Trullinger and Sasaki [18], it is possible through a set of transformations
and neglecting higher powers in (a/d0)

2 that the transfer integral equation (17), with the first-
order lattice corrections included, can be approximated by a Schrödinger-type equation. For
the TIO (17) with the function (18), one obtains in a similar way the following Schrödinger
equation:

− 1

2m∗
d2�n(φ)

dφ2
+ Veff(φ)�n(φ) = ε̃n�n(φ), (19)

where ε̃n = εn − V0, with

V0 = − 1

2ρ
ln

[
2πa2

ρd2
0

g1(y)2

]
, m∗ = [β Aω0C0g2(y)]2, ρ = β Aaω2

0, (20)

where V0 is a temperature-dependent energy minimum,

g1(y) =
(

2y

π

)1/2

exp(y)K1/4(y), (21)

and

g2(y) =
{

K1/4(y)

4y[K3/4(y) − K1/4(y)]

}1/2

. (22)

Here, Kl(y) is the modified Bessel function and the parameter y is defined as

y = β AaC4
0/8Cnl . (23)

Equation (19) is the Schrödinger equation for a single particle of mass m∗ given by
equation (20), and moving in the nonlinear effective potential

Veff(φ) = Vs(φ) − 1

24

a2

d2
0 g2(y)2

(
dVs(φ)

dφ

)2

, (24)

where g2(y) is given by equation (22). When Cnl = 0(y → ∞), g2(y) = 1 and the effective
potential (24) reduces to that obtained by Trullinger and Sasaki [18] and where d0 is the mean
width of the static kink soliton. In the model under consideration, we can then interpret the
quantity

deff = d0g2(y) (25)

as the effective mean width of the static kink in the system where g2(y) may be viewed as the
renormalization coefficient due to the presence of an anharmonic interparticle term [32]. As we
will see below, this dependence of the effective kink width on the temperature is at the origin
of the dependence, on the temperature, of the first lattice corrections to the thermodynamic
properties of the system. Figure (3) shows the variation of the renormalization coefficients
g1(y) and g2(y) as a function of 1/y which is linearly proportional to the interparticle
anharmonicity strength and to the temperature. It appears that g1(y) is a decreasing function of
Cnl while g2(y) is an increasing one. The two quantities contain all the information concerning
the contribution of the anharmonic interparticle interactions to the thermodynamic quantities
of the system.

Note also that equation (18) is identical to the Schrödinger equation obtained for the basic
NKG model, except for the fact that the quantities V0 and m∗ depend, here, on the interparticle
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Figure 3. Renormalization coefficients g1(y) and g2(y) as a function of 1/y, where y is given by
equation (23).

anharmonicity strength Cnl through y. In the limit Cnl → 0, i.e., y → ∞, g1(y) = 1 and
g2(y) = 1, one recovers the basic results [13, 21]:

V0 = − 1

2ρ
ln

[
2πa2

ρd2
0

]
, m∗ = (β Aω0C0)

2. (26)

Accordingly, the Schrödinger equation (18) can be treated by the same technique usually
invoked to solve the Schrödinger-type equation obtained for the basic NKG systems. For
this purpose, in the thermodynamic limit, (L → ∞, N → ∞ with L/N = a constant), Zφ is
dominated by the lowest eigenvalue ε̃0 and the free-energy per unit length, f = −(1/βL) ln Z ,
becomes

f = − 1

2βa
ln

(
2π Aa

βh2

)
+ Aω2

0 V0 + Aω2
0 ε̃0. (27)

As one can easily see, to evaluate f , the main problem we are faced with consists in the
calculation of the lowest eigenvalue ε̃0 of the Schrödinger operator. In the low-temperature
regime β � 1(m∗ � 1), there are several ways to find approximate eigenvalues ε̃0, all
of them known as the improved WKB methods (see [33] and references therein). In the
following, we use the procedure developed by Croitoru et al (see for example [20, 34]) based
on the assumption depending on a large parameter which has the advantage of making a clear
distinction between the various contributions to the free energy: phonons, kink, kink–kink
interactions, and so on. Following this procedure, the calculation of the ground state, ε̃0, is
similar to the one performed in the case of the basic NKG systems [20, 21]. Then

ε̃0 = ε̃00(1 − 2ν)

(
1 − 1

24

a2

d2
eff

)
(28)

for the φ − f our potential, and

ε̃0 = ε̃00(1 − 4ν)

(
1 − 1

24

a2

d2
eff

)
(29)



The free-energy of kink compacton-bearing systems 1755

–2 –1 0 1 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

φ
 –5 0 5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

φ

ε
00

 

ε
0
 

(a) (b)

Figure 4. Shape of the effective potential Veff(φ) given by equation (24): (a) for the φ − f our
potential and (b) for the sG potential. Two cases are considered: a/d0 = 0 (dotted curve),
corresponding to the unperturbed substrate potential Vs(φ), and a/d0 = 0.2 with g2(y) = 3.5, i.e.,
1/y = 2 × 10−3 (solid curve). The two curves are superposed since they are almost identical. For
the φ − f our potential case, the shape of the effective potential is qualitatively different to that of
the substrate potential for very large values of φ. However, this modification of shape has no effect
on the physics of the problem since we are concerned only with the displacement field close to or
belonging to the interval [−1, +1] corresponding to phonons and kink like excitations.

for the sG potential, and where ε̃00 is the first term in the asymptotic expansion of the lowest
eigenvalue of the isolated potential well given by

ε̃00 = 1/(2
√

m∗). (30)

The quantity ν is the small parameter related to the small shift from the eigenvalue of an
isolated well due to the presence of the other degenerate minima of the potential represented in
figure (4). The presence of these degenerate minima leads to the tunnel splitting of the lowest
level ε̃00 of the isolated well. The lower extremity can be found from the boundary conditions
for the wavefunction of equation (18) and its derivatives. The result which takes into account
the various low-lying excitations contribution is

ν = νk + νkk. (31)

The single kink soliton contribution νk is given by

νk = (6�/π)1/2

(
1 − 1

10

a2

d2
eff

)
exp(−�), (32)

with

� = β E (0)

eff

(
1 − 1

120

a2

d2
eff

)
, E (0)

eff = E (0)
s g2(y) (33)

for the φ − f our potential, and

νk = (2�/π)1/2

(
1 − 1

72

a2

d2
eff

)
exp(−�), (34)
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with

� = β E (0)

eff

(
1 − 1

72

a2

d2
eff

)
, E (0)

eff = E (0)
s g2(y) (35)

for the sG potential, where E (0)
s is the well-known static kink soliton energy of the basic NKG

systems defined in equation (9) and equation (10) for the φ − f our and for the sG potentials,
respectively. The quantity E (0)

eff may be viewed as the renormalized static kink energy in the
system, due to the anharmonicity of the interparticle interactions [32]. The quantity νkk is the
contribution of kink–kink interactions and is given by

νkk = −ν2
k

[
ln (12γ�) − 1

5

a2

d2
eff

]
(36)

for the φ − f our potential, and

νkk = −2ν2
k

[
ln (4γ�) − 1

36

a2

d2
eff

]
(37)

for the sG potential, with γ = 1.781 072 . . ., the Euler constant. The imaginary part of νkk,
πν2

k for the sG and for the φ − f our potentials, is omitted in the above expression and is
out of scope of the paper. Nevertheless, it can be interpreted as a quantity describing the
finite lifetime of each state of the potential [21]. In the limit of vanishing Cnl , this result is in
complete agreement with that found by Grecu and Visinescu [20]. We are now in possession
of the relevant parameter, ε̃0, entering in the construction of the thermodynamic properties of
the system:

ε̃0 = 1

2
√

m∗

(
1 − 1

24

a2

d2
eff

)
− 1√

m∗

(
1 − 17

120

a2

d2
eff

)

× (6�/π)1/2 exp(−�)

{
1 − νk

[
ln(12γ�) − 1

5

a2

d2
eff

]}
(38)

for the φ − f our potential, and

ε̃0 = 1

2
√

m∗

(
1 − 1

24

a2

d2
eff

)
− 2√

m∗

(
1 − 1

18

a2

d2
eff

)

× (2�/π)1/2 exp(−�)

{
1 − 2νk

[
ln(4γ�) − 1

36

a2

d2
eff

]}
(39)

for the sG potential. The interparticle anharmonicity strength Cnl enters in the above
expressions through the effective mass m∗.

Based on the treatment of the basic NKG systems, we can then separate the free-energy
into two parts: f = fph + ftun; the phonon part is fph, and the tunnelling or soliton part is ftun.
The first part is given by

fph = 1

βa
ln

(
βh̄C0

ag1(y)

)
+

1

2βdeff

(
1 − 1

24

a2

d2
eff

)
, (40)

both for the φ − f our and the sG potentials. The second part, which is the tunnelling
contribution written in the form known from the soliton kink gas approach [16, 17, 21] and
which evidences the contribution of kink compaction–kink compaction interactions, is given
by

ftun = −kBT n(c)
k

(
1 − B(c)

k n(c)
k

)
, (41)
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Figure 5. Kink soliton density n(c)
k as a function of the reduced temperature Tr = kBT/Aω0C0

and for three values of the dimensionless interparticle anharmonicity strength ξ = Cnl/C2
0 : (a) for

the φ − f our potential and (b) for the sG potential.

with

n(c)
k = 1

deff

(
6β E (c)

eff

π

)1/2 (
1 − 17

120

a2

d2
eff

)
exp

[
−β E (c)

eff

]
(42)

and

B(c)
k = deff

(
1 +

1

24

a2

d2
eff

) [
ln(12γβ E (c)

eff ) − 1

5

a2

d2
eff

]
(43)

for the φ − f our potential, and

n(c)
k = 2

deff

(
2β E (c)

eff

π

)1/2 (
1 − 1

18

a2

d2
eff

)
exp[−β E (c)

eff ], (44)

and

B(c)
k = deff

(
1 +

1

24

a2

d2
eff

) [
ln(4γβ E (c)

eff ) − 1

36

a2

d2
eff

]
, (45)

for the sG potential. Equations (41)–(43) are, in the limit (a/d0)
2 → 0, in complete

agreement with previous calculations of the kink soliton and kink soliton–kink soliton sector
contributions [32]. Similarly, in the limit Cnl = 0, they are also in complete agreement with the
results of the kink and kink–kink contributions for the basic NKG systems [20]. Therefore, the
quantity n(c)

k , plotted in figure (5), can be identified as the kink soliton density within the ideal
gas soliton approach while the quantity B(c)

k may be viewed as the second virial coefficient
resulting from the soliton–soliton interactions. These quantities are corrected by the lattice
effects.

As is seen from equations (41)–(45), in the kink soliton contribution there appears a lattice
corrected kink energy

E (c)
eff = E (0)

eff

(
1 − 1

120

a2

d2
eff

)
(46)
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for the φ − f our potential, and

E (c)
eff = E (0)

eff

(
1 − 1

72

a2

d2
eff

)
(47)

for the sG potential, where E (0)

eff is the known unperturbed kink soliton energy defined by
equation (33) and by (35) for the φ − f our and the sG potentials, respectively. It appears that
E (0)

eff is temperature dependent and is different from the static kink soliton energy calculated
in section 2 (see equations (6) and (7)). Thus, one may view E (0)

eff as the effective energy of
the static kink soliton which takes into account the nonlinear interaction between kink solitons
and phonons, induced by the anharmonicity of the interparticle interaction. Similarly, the
correction factor appearing in the lattice corrected expressions of the energy, equations (46)
and (47), and those appearing in the expression of the free-energy, due to lattice effects,
are temperature dependent since the effective mean width of the kink in the system, deff ,
depends on the temperature. This dependence results in the anharmonic interactions or
inelastic collision between low-lying excitations due to the anharmonicity of the interparticle
interactions. The above results suggest that, in the system where the interactions between
particles are anharmonic, the first lattice corrections are temperature dependent and become
less and less important when the temperature is increased.

3.2. Purely anharmonic case: kink compacton systems

The classical partition function for systems governed by the Hamiltonian (1), with C0 = 0, for
the density of states in the phase space is given in factored form by equation (15), where the
kinetic contribution Z φ̇ and the configurational part Zφ are given by equation (16) with εn the
eigenvalues of the TIO defined by equation (17). In this case, the corresponding TIO can be
approximated in a similar way through a set of transformations and neglecting higher powers
in (a/dkc)

2, i.e., including the first lattice corrections, by the same Schrödinger equation (19)
for the eigenfunction �n :

− 1

2m ′∗
d2�n(φ)

dφ2
+ Veff(φ)�n(φ) = ε̃n�n(φ), (48)

where ε̃n = εn − V ′
0. However, the temperature-dependent energy minimum V ′

0 and the
parameter m ′∗ are now given by

m ′∗ = β Aaω2
0

(
β ACnl

4a3

)1/2

(1/4)


(3/4)
,

V ′
0 = − 1

β Aaω2
0

ln

[√
2
(1/4)2

4

(
a3

β ACnl

)1/2
]

.

(49)

Similarly, the effective potential is also rewritten as follows:

Veff(φ) = Vs(φ) − �

(
dVs(φ)

dφ

)2

, (50)

with

� = π2

(24η)1/2


(3/4)


(1/4)

(
a

dkc

)2 (
β Aaω2

0

)1/2
, (51)

where η is the model-dependent numerical coefficient defined in section 2. As is seen from
equation (51), the effective potential depends on the temperature through the discreteness
coefficient �, and then this dependence is at the origin of the dependence,on the temperature,of
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the fist lattice corrections to the thermodynamic properties of the system. As in the case of kink
soliton systems of the preceding subsection, in the thermodynamic limit (L → ∞, N → ∞
with L/N = a constant), Zφ is dominated by the lowest eigenvalue ε̃ ′

0 and the free-energy per
unit length, f , becomes

f = 1

4βa
ln

[
4β3h4Cnl

π2
(1/4)4 Aa5

]
+ Aω2

0 ε̃
′
0, (52)

where ε̃ ′
0 ≡ εn=0.

By making use of the procedure of the preceding subsection for solving ε̃′
0, the lowest

eigenvalue ε̃′
0 of the Schrödinger equation (48) is then given by

ε̃ ′
0 = ε̃ ′

00(1 − 2νc)(1 − �) (53)

for the φ − f our potential, and

ε̃ ′
0 = ε̃ ′

00(1 − 4νc)(1 − �) (54)

for the sG potential, and where ε̃ ′
00 is the first term in the asymptotic expansion of the lowest

eigenvalue of the isolated potential well, given by

ε̃ ′
00 = 1/2

√
m ′∗. (55)

The quantity νc is a small parameter related to the small shift from the eigenvalue of an
isolated well due to the presence of the other degenerate minima of the potential. It can also be
separated into two parts, the single kink compacton contribution νkc and the kink compacton–
kink compacton interactions contribution νkckc:

νc = νkc + νkckc. (56)

The analytical expressions of these contributions are given by

νkc = (6�c/π)1/2(1 − 24
10 �) exp(−�c), (57)

νkckc = −ν2
kc[ln(12γ�c) − 24

5 �] (58)

with

�c = χ[β E (0)

kc (1 − 4
15�)]3/4, χ = 1

π

(
213

35

)1/4[

(1/4)


(3/4)

]1/2 (
dkc

a

)1/4

(59)

for the φ − f our potential, and

νkc = (2�c/π)1/2(1 − 1
3�) exp(−�c), (60)

νkckc = −2ν2
kc[ln(4γ�) − 2

3�] (61)

with

�c = χ[β E (0)

kc (1 − 4
9�)]3/4, χ =

[
3523/4

π5/2


(3/4)


(1/4)

dkc

a

]1/4

(62)

for the sG potential. The quantity E (0)

kc is the static kink compacton energy defined in the
preceding section. By inserting the above expressions of νkc and νkckc in (56), we then obtain
the lowest eigenvalue ε̃ ′

0. Since we are in possession of the lowest eigenvalue, the free-energy
which follows from equation (52) can be separated into two parts: f = faph + ftun. The first
part faph, which may be viewed as the contribution of anharmonic phonons, is given for both
potentials by

faph = 1

4βa
ln

[
4β3h4Cnl

π2
(1/4)4 Aa5

]
+

π

2

(
24

η

)1/4 [

(3/4)


(1/4)

]1/2 (
Aaω2

0

)1/4

β3/4dkc
(1 − �). (63)
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Figure 6. Kink compacton density as a function of the reduced temperature Tr = kBT/E(0)
kc : (a)

for the φ − f our potential, and (b) for the sG potential. The dotted line represents the curve of the
quantity n(c)

kc while the solid line is the curve of the quantity nkc = n(c)
kc [1 − 2B(c)

kc n(c)
kc ] designating

the density of kink compactons which takes into account the interactions between kink compactons.

The tunnelling part or the contribution of kink compactons ftun is also given by

ftun = −kBT n(c)
kc [1 − B(c)

kc n(c)
kc ], (64)

with

n(c)
kc =

(
211

3π

)1/2
(β E (c)

kc )5/8

dkcχ1/2

(
1 − 10

3
�

)
exp[−χ(β E (c)

kc )3/4], (65)

B(c)
kc = 3

32χ(β E (c)
kc )−1/4dkc(1 + 14

15�){ln[12γχ(β E (c)
kc )3/4] − 24

5 �} (66)

for the φ − f our potential, and

n(c)
kc = 9 × 23/4 
(3/4)


(1/4)

(β E (c)
kc )5/8

dkcχ1/2

(
1 − 11

9
�

)
exp[−χ(β E (c)

kc )3/4], (67)

and

B(c)
kc = 23/4

9
√

π


(1/4)


(3/4)
χ(β E (c)

kc )−1/4dkc

(
1 +

14

15
�

) {
ln[4γχ(β E (c)

kc )3/4] − 2

3
�

}
(68)

for the sG potential. n(c)
kc , plotted in figure 6, may be viewed as the lattice corrected kink

compacton density within the ideal gas limit while B(c)
kc represents the second virial coefficient.

In the limit (a/dkc)
2 → 0, the above results, equations (56)–(68), reduce to the previous results

of kink compacton contribution to the free-energy [32].
As is seen from equations (59) and (62), in the kink compacton or tunnelling contribution

there appears a lattice corrected kink compacton energy

E (c)
kc = E (0)

kc (1 − 4
15 �) (69)

for the φ − f our potential, and

E (c)
kc = E (0)

kc (1 − 4
9 �) (70)
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for the sG potential, where E (0)

kc is the known unperturbed static kink compacton energy defined
by equations (13) and (14) for the φ − f our and the sG potentials, respectively. It is obvious
that the correction factor of this energy and those appearing in the expression of the free-
energy due to lattice effects are temperature dependent, since the discreteness coefficient
� depends on the temperature. The above temperature dependence of the lattice corrected
kink compacton energy may be attributed to nonlinear interactions between kink and lattice
anharmonic phonons.

4. Conclusion

In this paper, we have investigated the low-temperature classical statistical mechanics of
discrete nonlinear Klein–Gordon (NKG) systems with anharmonic interparticle interactions
which takes into account the lattice corrections due to the discrete character of the systems.
In addition, our study has taken into account the two kink interactions in the system. Thus,
we have used the transfer integral operator (TIO) with the first lattice corrections included by
considering terms of order (a/d0)

2 where d0 is the mean width of the kink solitons and a the
lattice constant. Two particular substrate potentials have been considered: the φ − f our and
the sine-Gordon (sG) potentials.

We have first focused our attention on the case where the system may exhibit the static kink
soliton as a solution of the resulting generalized NKG equation. The obtained results reveal
a dependence of the first lattice corrections to the free-energy in particular, and consequently
to other thermodynamic quantities in general, to the temperature. This dependence of the
first lattice corrections to thermodynamic properties of the system results from the fact that
the first lattice corrections are a function of the effective width of kink solitons which, in the
NKG models with anharmonic interparticle interactions, depends on the temperature through a
coupling between the interparticle anharmonicity strength and the temperature. Furthermore,
these results show also that the increase of the temperature lowers the discreetness effects and
the correction terms in the thermodynamic quantities become less and less important as the
temperature is increased.

Next, we have considered the limiting case of the purely anharmonic NKG systems
for which the stable static kink compacton like excitations can be obtained. Here, the
thermodynamic quantities such as the free-energy are sensitive to this kind of excitation. We
have shown that the first lattice corrections to the free-energy of the system and to the static
kink compacton rest energy are also temperature dependent. Futhermore, the discreteness
coefficient due to lattice discreteness is proportional to ∼(a/dkc)

2T −1/2, i.e., is a function of
the kink compacton mean width. The analysis of these results shows that the lattice effects
decrease for increasing temperatures as in the case of the NKG systems with anharmonic
interparticle interactions exhibiting kink solitons.

Finally, we mention that such temperature dependence of discreteness effects to the
classical statistical mechanics of kink gas has been already obtained in the case of the basic
NKG systems. However, and contrary to our results where even the first lattice corrections are
temperature dependent, the temperature enters in their results through the pinning potential
barriers, i.e., when the system is highly discrete and then where the trapping of kinks is more
important compared to the first lattice corrections which are independent of the temperature.
Note that our results are valid for a weakly discrete system and where the kink width is greater
than the lattice spacing. In this limit, the first lattice corrections are more important compared
to the contribution of the pinning potential.

As previously mentioned [32], it is important to note also that, although a proof of a similar
CKBT phenomenology does not exist at present, we think that the temperature dependence of
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the first lattice corrections to the thermodynamic properties of the system may be attributed
to nonlinear interactions between the different low-lying excitations of the system induced by
the anharmonicity of the interparticle interactions. It should then be interesting to establish
a proof similar to the CKBT phenomenology which takes into account the renormalization
of kink soliton parameters due to the anharmonicity of the interparticle interactions. This
problem is already under consideration.
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